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Abstract

7 Finite deformation in the crack-tip zone of plastic deformation is

investigated for Mode-I opening of a crack in a thin sheet of elasto-plastic
s material. The material obeys the von Mises yield criterion in the true
stresses, and the stretching tensor satisfies a flow law of the Prandtl-
4
! Reuss type. Ihcompressibility and a state of generalized plane stress are
assumed. It is assumed that linearized elasticity applies outside the zone
of plastic deformation. On the crack line between the crack tip and the
elastic~plastic boundary, two distinct regions have been recognized: the
near tip zone and the intermediate region. In the near tip zone the fields
are controlled by the radius of curvature of the blunted crack tip. Here
the stress field has been approximated by classical plane stress results.
It has been assumed that the crack-line stresses may be taken as uniform
in the intermediate region. In each region, deformation variables have
been determined by the use of the constitutive relations, and the results

have been matched to the corresponding quantities in the neighboring region(s).

In thi: manner expressions have been constructed for the deformation gradients
on the crack line, in terms of the distance to the crack tip in the deformed
configuration, the yield stress in shear and the stress-intensity factor of

linear elastic fracture mechanics.
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Introduction
It is difficult to include the effects of deformation induced geometry
changes in an analysis of stresses and deformations near a crack tip. For
plane-strain conditions, Rice and Johnson (1970) considered the modification
of elasto-plastic crack-tip stress and strain states due to crack blunting.

McMeeking (1977) and Rice et al (1979) used finite element methods to include

finite deformation in their investigations of crack-tip opening in elastic-

plastic materials. Finite deformations near a statiomary crack tip in an
elastic solid have been investigated by Knowles (1977), Knowles and Sternberg

(1980, 1981), and Lo (1977), who used analytical methods.

e In this paper we present an approximate analysis of the effect of finite
deformation on the crack-line fields for Mode~I opening of a crack in a thin
sheet of elasto-plastic material. Away from the crack tips the strains are
assumed to be infinitesimal, and the material behaves according to the theory
of linear elasticity. The zones of plastic deformation near the crack tips
are small as compared to the crack length (small-scaie yielding). Finite
deformation is, however, taken into account in the near-tip plastic
deformation. The constitutive model for the elastic-plastic deformations is
a finite deformation version of the elastic perfectly-plastic solid, with the
Prandtl-Reuss flow rule and the von Mises yield condition. It is assumed
that the material is imcompressible, and that the stress state in the sheet
may be approximated by generalized plane stress.

We consider a crack which, in the reference state, is defined by X, < 0,

1
2 X2 = 0. The crack faces remain free of surface tractions. In the deformed
configuration the stress-equations of equilibrium have the same form as for

the corresponding small strain theory. It is assumed that stressing of the

sheet gives rise to a blunted crack tip profile of smoothly varying radius

of curvature, whose maximum value is reached on the crack line. We focus on




the fields near the crack line, and we consider a near-tip zone and an
intermediate region in between the near-tip zone and the elastic-plastic
boundary. In the near-tip zone the fields of stress and deformation should
be greatly affected by the radius of curvature of the blunted crack tip. In
this zone we use a classical stress field that has been applied previously
to a sheet containing a circular hole and for a sheet with an edge notch,
see Kachanov (1971). This field is axially symmetric. In the intermediate region
we assume uniform crack-line stresses. It is to be expected that the actual
stresses near the crack line will develop a dependence on the polar angle
in the transition from the essentially axisymmetric field very close to the
blunted tip to the uniform field in the intermediate region. For simplicity
we have,however, assumed that the axisymmetric field remains applicable until
it can be matched to the uniform stresses in the intermediate region. The
choice of the stress-field in the intermediate region is shown to be consistent
with a slip-line field proposed by Themason (1979).

When the stress fields have been chosen, the crack line deformation can
be analyzed by the use of the constitutive relations. The deformation gradients
can be solved rigorously in the near-tip zone in terms of a single function
of the crack-tip radius, whose form is subsequently determined by matching
deformation variables to corresponding ones in the intermediate region. In
the latter region the crack-line deformation is analvzed by following the
method discussed by Achenbach and Dunayevsky (1984) and Achenbach and Li (1984).

The solution is completed by matching the intermediate-region results to the

deformation gradients at the elastic-plastic boundary.
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The principal results of the paper are expressions for the deformation
gradients in terms of the distance to the crack tip in the deformed con-
figuration, the yield stress in shear and the stress intensity factor of
linear elastic fracture mechanics. It is shown that axz/axz is singular

at the crack tip, while axl/ax vanishes at that point.
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1. Governing Equations

The reference and current positions are defined by postion vectors

X and x, respectively. In the current configuration the equilibrium equation

is

divT = Q R (1.1)
where T is the Cauchy stress. In this paper, the spatial derivatives are
with respect to x unless stated otherwise. The constitutive model that is
being considered is a large deformation version of the elastic perfectly-
plastic solid, with the Prandtl-Reuss flow rule and the von Mises yield
criterion., In addition it is assumed that the material is incompressible.

The yield condition is represented by

T'_IV = 2k2 s (1.2)

where k is the yield stress in pure shear and T' is the stress deviator

defined by

T'=T—-§—Itr’§, (1.3)
Here I and tr stand for the unit tensor and the trace, respectively. When
(1.2) is satisfied, we use an incremental constitutive equation of the type
1 2 . .
Q=z('}'+p})+/\'§' . (1.4)
The elastic part of D is represented by

el 1 2 .
=57 (T +5D . (1.5)
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5

Here D represents the stretching tensor, which is defined by

D=2 I+ (W', (1.6)
where v is the particle velocity:

ox
=% = — . 1.

v =% =37 Kx,t),0) (1.7)
The dot symbol denotes the material time derivative. 1In (1.4) and (1.5)
p defines the indeterminate pressure, A a positive multiplier, and the °
symbol defines the Jaumann rate:

° .

T=T-WI+1VW, (1.8)
where

W2ty - (). (1.9)

It should be noted that there is some controversy over the choice of
stress rate in rate-type constitutive equations, see e.g. Lee et al (1983) and
Dienes (1979). 1If one wishes to rewrite a small deformation constitutive
equation of rate type into its large deformation counterpart just by replacing
the small deformation stress rate by an objective stress rate, it is,to the present
authors' opinion, generally inadvisable to use the Jaumann rate. This is
because W is not a measure of the rate of rotation of a material point. Indeed,
it is not difficult to find a deformation gradient F which is symmetric positive
definite (rotation - free with regard to polar decomposition), but with non=-zero

W. Actually

F = Q(e)IQ (t) (1.10)
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provides such an example, where Q(t) is a time dependent orthogonal tensor,
ad [ (# vYI, Yy = const.) is a symmetric positive definite constant tensor.
From the physical point of view, it seems that in the constitutive equations
(1.4) and (1.5) , Dienes' rate, Dienes (1979), is a more reasonable choice
than Jaumann's rate. In the present analysis, however, the use of Jaumann's
rate is acceptable because the principal axes of stress do not rotate
significantly. In addition, Jaumann's rate is much easier to handle than
other rates. These are the reasons for using (l1.4) and (1.5) here.

The pressure p can be eliminated from (l.4) and (1.5) by using the

condition of incompressibility

divv =0 . (1.11)
By taking the trace of (l.4) or (1.5) we obtain

o
.

p=-3trT (1.12)

which in turn reduces (1.4) to

l -] 1 o .
D=2~ (T-31¢trT)+ AT , (1.13)

W

In the present paper we will discuss the deformations of a thin cracked
sheet of uniform initial thickness h. As in the corresponding small
deformation theory, one can facilitate the analysis by using the generalized
plane-stress assumption. To see the implication of this assumption we

introduce a Cartesian coordinate system with its x, = 0 plane coinciding

3

with the mid-plane of the undeformed sheet. Under the assumptions that the
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deformation is symmetric with respect to the mid-plane, that the lst Piola
Kirchhoff stress does not vary significantly throughout the thickness, and

that the planer faces are free of loads, Knowles and Sternberg (1983) showed

that
= = = = = 4
Ta3 T3a o, F3a Fa3 0, T33 0 (l.l4a,b,c)
hold on x3 = 0, where Greek indices stand for either 1 or 2. If (l.l4a)
holds not just on X3 = 0 but in its vicinity, we may reduce (l.1) to its

2D version, i.e.,

T =0. (1.15)

This equation and (1.2) constitute the governing equations for the stress
components. It is noted that the same equations govern the stress dis-
tributions in the theory of small-strain plane-stress plasticity. Therefore,
we may utilize some known results from that theory. Another implication of

the plane stress assumption is that

v, = v = 0, (x3 = 0). (1.16)

With this result and the constitutive equations (1.13), we can determine

the velocity field in the mid-plane.
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2. Crack-Line Stresses

We start with the observation that the equilibrium equation (1.15) and
the yield condition (1.2) have the same form as for small deformation theory,
except that in the present context the stress is referred to the x position
(after deformation). Therefore the classical plane stress analysis for
stresses applies to the present problem, but with the boundary conditions
imposed on deformed boundaries.

It is assumed that the crack tip will blunt into a curve S which has a
root radius whose magnitude attains its maximum value a on the crack line.
For small polar angles, we may then approximate S by a segment of a circle
C of radius a.

At this point, we recall some formulas from the classical theory of plane
stress plasticity, see e.g. Kachanov (1971), pp. 262-272. A set of principal

stresses

T) = 2k cosw = 1), T, = 2k cos(u +¢r), (0 <w<m) (2.1a,b)
satisfies the yield condition (l1.2), where w is a parameter. When
/6 < w<57/6, the equilibrium equation becomes hyperbolic. The equations

for the characteristics and the corresponding integrals are:

% = characteristics

dx
—— = tan(¢-y) , 1 —-¢= const , (2.2a,b)
dx1
s = characteristics
dx.,
a;: = tan(o+v) , = + 5= const , (2.3a,b)
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9
where ¢ is the angle between the Tl and Xy directions,
_ 1 1 cotw
V(w) = 51 - 5 arccos(&37) (2.4)
and
__ 1 ‘[ (3-4cos? g)
Qw) = Sint dg. (2.5)

With regard to the crack-line stresses, one would expect that the
stress right near the tip is affected by the traction free boundary S,
while the stress away from the tip (but still within the plastic zone)
will not be all that different in form from those for the corresponding
small-strain crack problems. This would suggest that we should approximate
the crack-line stresses by using two fields: one for the immediate vicinity
of the crack tip, and another for the intermediate region between the near-

tip zone and the elastic-plastic boundary.

2.1 Stresses in the near-tip zone

Let A and B be points on S between which C and S do not differ significantly,
see Fig. 1. Also, let D be a domain surrounded by the arc AB, and two
characteristics defined by (2.3) and (2.2), emanating from A and B. It is
reasonable to approximate S between A and B by C . Then the stresses in D
are found as solutions of the equilibrium equation (1.15) and the yield

condition (1.2) subject to

where Tr’ T., and T stand for the components of T referred to the polar
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coordinate system (r,0) which has its origin at the center of (. Due to the

hyperbolicity of the governing equation, T vanishes identically within D, and

ro

Tr and T6 show axisymmetry. The solution to this problem appears in standard

textbooks of plasticity in connection with the extension of a sheet with a

circular hole. We record the following results from Kachanov (1971);

( )2 = —/?’—~ e'/’3(n/3_w) s (2.7a)

r
a 2sinw

(2.7b,c)

Tr=2kcos(w+%), T=2kcos(w-%) (0 < w < 7/3)

6

2.2 Crack-line stresses in the intermediate region

Two Mode-1 near-tip stress distributions have been proposed for the
small-deformation plane-stress case in an elastic perfectly-plastic material.
Hutchinson (1968) proposed a stress field which corresponds to the system of
characteristic curves shown in Fig. 2. He also showed that this distribution
can be obtained as the limit for a certain non-linear elastic material as
the stress-strain curve becomes flat. In the loading zone ahead of the crack

tip the stresses are

T =k cosaﬁ, T = k(Zcos33 + BSinzacosa), T -k sinde. (2.8a,b,c)

11 22

]

12

The crack line stresses are T =k, T = 2k and T 0. The latter

11 22 12
results also follow from (2.1), since it can be deduced from (2.2)-(2.4) and Fig. 2
that the crack line is a characteristic curve with . = n/6.

Thomason (1979) proposed a class of stress fields which include the

Hutchinson field as a special case. The svstem of characteristic curves is
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Fa) = 2-a (5.11)
1

Substitution of (5.11) into (3.28) - (3.30) completes the desired
relations on the crack line in the near-tip zone, a < xl < ka. In the

intermediate region, xa < X < xp, we find from (5.11), (5.7) and (3.128)

X =-%— (x. - V3a/x) . (5.12)

1 1 1
By using (4.13), (5.2), (5.1) and the previously computed result for

*
C(t), the expression for v becomes

2,2
* V33 148 (V3 2/38 ¢
R (K a + xo> - 2R (5.13)
K" a K a
For «a < Xy < xp, (4.14) then takes the form
*
ox -qx [1/a-1/G (x )]
2 * P o} o}
BXZ F(xo)[a/G (xo)] e . (5.14)
where

- / f2
5 = 3(1+8) - 2/3¢2%8 i (5.15)
k" (1-8)

q = y3(d+8) , (5.16)
<3 (1-3)

and

G(x )
o

Fey = [ aae . (5.17)
(6]

*
The function G (XO) mav be selected in a convenient manner since C(x)) is arbitrary,
[V

see also the footnote under Eq.(4.12).
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X, = F(x /=) . 5.7
X (xo/ ) (5.7)
Differentiation of this expression gives
3x1 n
= , < X3 = s 5.
X =0 xacx <xy X, Fr(x_/n) (5.8)
1 o
where X) = xp defines the elastic-plastic boundary.
At the elastic plastic boundary the deformation gradients are Fl and FZ,
i.e.,
IX Ix
1 2 _
(5x ’ ?x—) = (FpFy) . (5.9)
1 2
It can be shown that both }xl/le and sz/“:X2 are continuous across X) = xp. The
uniformity of Tll and T22 in the intermediate zone also implies that Fl and
F2 depend on k and the elastic constants only, i.e. Fl and F2 are independent
of a. Equations (5.8) and (5.9) then give the relation
X, - V3a/« N
X, = X_: F'( ——————————) = — .
at x, Kp - Fl R (5.10)

where (5.4) has also been used. The argument of F'(.) depends on a, but the
right-hand side of the equation is independent of a. It then follows that
F(+) is either linear in its argument, or the argument is constant. The
latter case would be xp-'fia/- = constant. Since the plastic zone should
vanish as a + 0, the constant must be zero, implving xp < a, which is
unacceptable. Hence (5.10) can only give a linear relation for F(+). The

integration constant has been set equal to zero, because x0t 0 as a . 0.
b

If we would take a as the argument we can write

M |
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5. Matching of Solutions

It may be assumed that the particle velocities as well as their

derivatives with respect to X, are continuous at Xy = ka on the crack line.
It then follows from (3.18a) and (4.3b) that for «a < x1 < Xp’ x2 =0
_
vy p .

Equations (4.4b) and (3.18c¢) yield

V3
v = -2

1,22 o3

!DN IN-

The function C(t) follows by matching (4.6) to (3.18b). Equation (4.6)

may then be written as

_ /3 148 . 2/34 8

= X
2,27 5218 "1 7 5 T 1-8

v

With (5.1) and the assumption that a = 0 at t = 0, we may rewrite

(4.9) as

V3
X =X, -— a,
'S

o) 1

and hence (4.8) becomes

X. = X (x, - v3a/k)
o

1 1

Continuity of X1 at X, = xa then yields the identity

F(a) = Xo(na) s n=x - V3,

where (3.28) and (5.5) have been used. Equations (5.6a) and (5.5) now

imply

I A P P PO . U . Y s MR e ——— LU VAETRAT WAT VoAl W SUPE G U T MY Y L YA W PG S W S Y .

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6a,b)
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Here F and G are arbitrary functions,T and v (s,xo) follows from (4.6)

2,2
and (4.9) as

s

. ]
Vog,2(8%) = =105 vy, 20(8) (g vi(Rde 4 x ) + Cls)

From (4.11) we conclude that on the crack line

% h(t,x )
o

—= =F(x ) e .
8X2 o]

In the next section the functions vl(t), vl’22

and G(xo) will be determined by the use of appropriate matching conditions.

“One of these functions is actually redundant, but the form (4.11) is

convenient for later use.
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(4.13)

(4.14)

(t)’ Xo(xlxt)’ C(t)’ F(XO), XO(XO)
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or

S
2,2 1-6 1,22

v =

(t:)x1 + C(t) ,

where § is defined by (3.11), and C(t) is an arbitrary function.

With these results, one can relate X to x. Indeed, since X = 0, we

have
-3X_1.+V _al.—.o
ot 1 3x ?
1
where we have used that v, = 0 on the crack line. Equation (4.7) yields

2

Xl = Xo(xo) ,

where Xo is an arbitrary function and X is defined by

t

L _£ vl(s)ds.

To determine an expression for axz/BX on the crack line, we use

2
(B/sz)(xz) = (0 , to obtain
3 8X2 .y 3 (sz) - 8X2
at{axz 1 axl sz 2,2 axz
where we have used that v2 = 0 and X, = 0 on the crack line. The solution
to (4.10) is
)Xz o1 e—h(t,xo)
i, F(xo)
where
t
| S (5,x)d
h(t,=z ) = v S,X s,
ot G(XO) 2,2 o}

A'Ay‘lq_'n'.-n'--';—'1:.5'-‘;_1:;‘-'-@1\'-nnl'--‘;'-nn;-nh‘llM

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)
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4, Crack-Line Deformation in the Zone of Uniform Stress

Next we investigate the crack-line displacement gradients away from the
tip, in the region where the stresses are defined by (2.10), i.e.,
Tll = k and T22 = 2k. We essentially follow the procedure proposed by
Achenbach and Li (1984).

Substitution of (2.10) into (1.8) and (1.3) gives near the crack-line:

19

0 -k O
° 1
1‘ = E (V1,2 - Vz,l) -k 0 O ’ (4.1a)
0 0
0 0 O
?' =< 0 k¥ O . (4.1b)
0 0 -k
Equation (1.13) then yields
1 ‘0 =k 0) 0 0 O
p=Ll (v .-v )(-kOO +A<0k0 (4.2)
oA L2 210y g oo, 0o 0-x/"

Since D11 = 0, we have on the crack line

vl,1 =0 , or vl = vl(t)_ (4.3a,b)
Equation (4.3a) also holds near the crack line, and hence we may write for
x2 = 0, < a < xl

vl’221 =0, or vl’22 = v1,22(t)' (4.4a,b)
In the same manner (3/3x2)Dlq vields for X, = 0, « a < X, ¢

(1+3) vl’22 = - (1-%) vz,Zl . (4.5)

- - . J
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Equation (3.25) implies

R = F(ae 8y | (3.27)
where the functional form F(-) will be determined in the sequel. Since

the displacement is radial it follows from (3.27) that

x —g(
X =2 Fae™® Py | (3.28)

where g(p) is defined by (3.26). Differentiation of (3.28) yields

aX X X X X -g(p)
e _1 - 78 -8 (p) a’B rro. —2(p), &
vl (SOLB - )F(ae ) + " F'(ae ) TFGY (3.29)
B r r
On the crack line at r = ka we have
le  k=£(k) 3x2 _ xa axl 8x2

— = B2 = , = = 0 (3.30a,b,c)
axl F'(a) BXZ F(a) 8X2 3X1 .

e .o, s e NN . .t T NN e T s T T T T T AT Wt e e
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17
Equation (3.13) or (3.15), together with (2.7a) and (3.4a),determine the
velocity field near the tip.
We next determine the relation between x and X. To this end, we note
that
R = Rty §§. =0 (3.19)
%
holds, where
R= (XX)™ (3.20)
aa
Equation (3.19) implies that R = const on
dxa -
TR (3.21)
or
%i = £(p) , (3.22)

where we have used (3.4a,b) and changed the independent variable from t to
a. It is more convenient to use p = r/a instead of a in (3.22). Noting the

relation

4 T ode 2 (3.23)
we transform (3.22) into
%% = - ___fﬁﬂl_l;_.’ (3.24)
ol = £(p)]
which integrates to
t/r (R) =0 e sle) (3.25)

where rO(R) is an arbitrary function of R, and

<

go) = [ —F . (3.26)
Nl

z-£(z)

T P —
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where (3.4a) has been used. The exact solution to (3.10) and (3.12) can
easily be written out:

-1/2/3 ew7§/2 s

£l = jz/@*/z (ot [Srnlms b- o7/ O 313
where
/3 i
he =) cos ™0 (5= /3) [ 1-sin(g-1/3)]° ' 20

Vhen § is small, which is usually the case, this solution reduces to

-1/2/3 o V372

f(w) = =

. (3.15)
(2//3)% (sinm)%

This expression satisfies (3.12). At the boundary of the near-tip zone,

i.e. for w = /6 and r = ka we find

f(w = 1/6) = £(p= «) = V3/x , (3.16)
where « is defined by (2.9).
Equation (3.15) together with (2.7a) and (3.4a) determines the velocity
field in the near-tip zone. For future reference we list the following

results, which follow from (3.4a,b)

. 3 [} ~ o
v, =2f0) S W i (D 1l 4 G (3.17a,b)
2,2 a o 1,22 a? 02

Using the result (3.16) we find at r = «a :

V34 _ V34 - _ v3a
1 K 2,2

(3.18a,b,¢)
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Since W vanishes identically, we have

: . 0 ]
=T=a 3 T + v, 3XQ T . (3.5)

1 o

By the use of (3.5), (3.4 c-f) and (l1.13) we obtain equations for avr/Br

and vr/r. Subsequent use of (3.4) reduces these equations to

L =_l__ - LI ' (Z _..1_
£'(0) = g7 [f@)-p1(2T) - T + (5T, - 3 Te) ; (3.6)
£G) J L eivorcort 4 21t 4 a2 T - L ,
i 2L - o [E)l -1y + 21 + A5 Ty - 3 T) (3.7)
In (3.6) - (3.7), a prime denotes a derivative with respect to p.

Elimination of A from (3.6) and (3.7) yields after some additional

i manipulation
2T -T T'T -T'T
g f£(p) 1 8'r 'r€
£'(p) - 59— —= + 53— ————— [£(p)-p] = O. (3.8)
2’1‘e Tr 0 2u ZTG-Tr
i According to (2.7a), p and w are related by

T/2V3 e—w/§/2

3 o(w) = S - . (3.9) ]
. (2/v3)* (sinw)” ]
; Elimination of p from (3.8) by the use of (3.9) then yields '
’ q

df [cos (w+T/3) 8 } S lw) ]

duw + L sinw + cos (w=-7/3) £= cos (w=m/3) ? (3.10) 1
) where /
.

§ = k/2u . (3.11)

The boundary condition (3.3) on r = a reduces to

£(x/3) =1, (3.12)
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3. Crack-Line Deformation in the Near-Tip Zone

In this Section the displacement gradients are determined on the crack

line in the near-tip zone defined by a < Xy < ka. First we analyze the

velocity vector v by integrating (1.13) with an appropriate condition at
r = a. Since we have assumed that near the crack line the deformed crack-

" tip boundary may be approximated by a circular segment of radius a, we have
-

{ X x = a‘ (3.1)

The components of the particle velocity then satisfy

v =aa, on [5[ =a (3.2)

X
a’o
but are arbitrary otherwise. To simplify the analysis we assume that v is

radial, i.e.,

v = g-x on |x|] =a . (3.3)

Then, the velocity field inside the material also becomes radial due to the
hyperbolicity of the governing operation. This justifies the introduction of

the following forms:

v, = a f(p) , Ve = o, (3.4a,b)

. = = = 4 ,d,
Tr Tr(p) s Te Te(o) s Tre 0, (3.4¢c,d,e)
: = a 3.41)
A= r(e) (

where ¢ = r/a , r = /(xaxa), and f(p) and A(p) are functions of ¢, and

Tr(O) and Te(p) are the stress components computed from (2.7b,c).
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; reason we have selected the Thomason field for the intermediate region.

As discussed earlier, however, the apex angle a of uniform field has to be small.
It can be shown that the point A', where the solution (2.7) is connected to

a uniform field, has an x1 coordinate smaller than ka. Since the system

of Fig. 4 reduces to that of Fig. 5 in the limit of o + 0 we may assume

that the X, coordinate of A' can be approximated as ka for small «.

Accordingly, one may say that the stress near the crack line beyond A' is

,wH,ﬁv-

uniform and approximately equal to

T..=%k T, =2k for x, >«a, |x,| ~ small. (2.10)

11 22 1 2|

In summary, we will use (2.7) for a < x. < ka, and (2.10) for

3 1

Ka < X < Xp’ where xp is the X coordinate of the elastic-plastic boundary

on the crack line.
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analytical methods., Consistent with the approximate nature of the present
analysis, we will use the simple 'extension' stated above.

To discuss the matching of the stress fields more closely, we examine
in a qualitative manner how the characteristics of the fields away from the
tip can be combined with those of the near-tip region. Figures 4 and 5
show such combined systems of characteristics for the Hutchinson and Thomason
fields, respectively. To the left of the characteristics merging at points A
and A' the stress field given by (2.7) is assumed to develop, while we
assume Hutchinson's and Thomason's field to the right in Figs. 4 and 5,
respectively. In Fig. 4 the crack line is characteristic to the right of
point A. Hence the upper and lower characteristics merge at A without slope
discontinuity, thus forming a cusp at point A (which, it may be noted, has
an Xl coordinate of «xa). From this observation, we may infer (and can prove)
that the stress at point A has essentially the same mathematical structure as
the Hutchinson field (Fig. 2) has at its origin (the crack tip). This con-
sideration and the analysis by Achenbach and Li (1984) then suggest that the
system of characteristic lines shown in Fig. 4 lead to an anomalous
deformation having a singularity at A. The details will not be given here,
but they can be shown by using the same method as reported in the sequel.
Since a deformation singularity at A would be unacceptable we are left with
the system of Fig. 5. Due to the presence of the uniform field to the left
of the point A' the two characteristics merging at A' will not form a cusp,

and, hence, will not cause an unacceptable singularity there. For that

LIPS A .
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shown in Fig. 3. The essential difference with Fig. 2 is in the presence

of a uniform field in a wedge-like region occupying 0 < 6 < o. Away from

this wedge-like region the two fields are essentially the same. Indeed,

the field of Fig. 3 reduces to that of Hutchinson as o tends to zero. For

S reasons which will be discussed shortly, we will adopt this solution for the
kl intermediate region, but we will assume a small value for a. Such a choice of
t a will make the overall stress field close to Hutchinson's prediction which,
as noted earlier appears to agree with other calculations,Hutchinson (19€8).

b’ In fact, the uniform field in the wedge-like region differs only slightly

5 from Tll = k, T22 = 2k when o is small.

2.3 Matching of stress fields

In order to obtain a complete picture of the crack-line stresses, we have
to match the stress fields in the near-tip zone to the ones in the intermediate
region. The simplest way of achieving this is to extend the near tip solution
(2.7) until the condition T =%k, T = 2k is met. Equation (2.7a) shows

11 22

that this condition is satisfied at

™23y L 5 07 (0 = n/6) . (2.9)

r

—=x = (/3

a
One would, of course, expect that T will develop dependence on 9 in the transition
from the essentially axisymmetric field very close to the tip to the non-
axisymmetric one away from the tip. It is beyond the scope of the present

paper to analyze this transition rigorously, because this would require

more information on the near tip deformation than can be obtained by

o w s T
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- Figure 6 shows the elastic-plastic boundary in the x,-a plane. The "a"

1
i‘ coordinate of the intersection of this curve and the line defined by (5.4) on
P which xo = constant, defines a function of X . We shall choose this function
3

-

* *
for G (xo) in (5.14). Since this construction of G yields

*
G (xo) = a (5.18)

on the elastic~plastic boundary, we find from (5.9) and (5.14) that

F(xo) = F2 . (5.19)
Continuity of 8x2/8X2 at X, = xa gives by the use of (3.30b), (5.11)
and (5.14)
p-1  aqn f1 na \" qna/G (na)
n K e - = (———-———) ed (5.20)
. F *
PE 2 G (na)
1t follows from (5.20) that
6" (na)
S _\ha) _ (5.21)
na Y s
where vy is the root of the equation
p-1_ an 1 - /
n K e —-— =y p eq Y_
F2 (5.22)
Hence, we have
%
G (xo) =Y X (5.23)
Equations (5.14), (5.19) and (5.23) then determine 3x,/3X, in <a - %, < xp as
N 1 1
X P =9x (> = =)
2 3
—~ = F, (—3— e 7% oo (5.24)
J¢2 < (‘O
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6. Results

On the crack line the near~tip region corresponds to a :.xl < Ka,

where ¥ is given by (2.9): « = 2.07. Equation (3.28) relates Xl to Xy by

X, = Flae™8()) = I 5o78(®) (6.1)
1 F
1
where (5.11) has been used and g(p) is defined by (3.26). Here p should be
interpreted as p = xl/a, and " is given by (5.6b). For X, = Ka, (6.1) yields
X1 = na/Fl. At xl = a we have p = 1 and (6.1) yields X1 = 0, because
f(1) = 1, and hence g(p) ~ [f'(l)—l]_lln(o-l) as p + 1, which implies
expl-g(p)] ~ (p-l)?'/3 as p + 1, because (3.9) and (3.10) give f'(l) = - L.
The crack-line stresses in the near-tip zone are given by (3.4c,d) and
(2.7b,C)- ThuS,
0 < Xl < na/Fl, or a < x; < Kka:
'I‘11 = 2kcos{(w + 7/6), T22 = 2kcos (w=7/6) , (6.2a,b)
where 7/6 < w < 7/3 , and according to (2.7a) Xy and w are related by
Xy 2 /3 V3(1/3w)
(—) = ———e . (6.3)
a ,
2 sinuw
The deformation gradients on the crack line follow from (3.29):
3IX F
1
R P T G (6.4)
)X I
1
Ix F
"2 1 _g(p) .
5%, ©5 ¢ (6.5)
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At X, = a, BXZ/BXZ is singular, but axl/axl vanishes.
The intermediate region is defined by «xa < Xy f_xp. The corresponding
range of Xl follows from (5.12) as ”a/Fl.i Xl f_(xp-/3a/K)/F1. The crack-
line stresses in the intermediate region are given by (2.10). Thus
na/F1 < Xl.i (xp-/3/o<)/F1 » or ka < x; < xp:
'I‘11 =k , T22 = 2k , (6.6a,b)
From (5.12) we conclude
9%
1 _
3%, Fi (6.7)

while sz/axz is given by (5.24).

The computation of numerical results requires the evaluation of the
integral in (3.26), where f(p) follows from either (3.13) or (3.15) and
(2.7a). The precise evaluation of the integral, which is not difficult
numerically, may not be worth the effort considering the approximate nature
of the present analysis. Hence, we will simplify the analysis by using
the approximate formula (3.15) for f. 1In addition it is found that the

*
Hermitian interpolation f of f

(6.8)

*
£ = —L(p—l)(p2+clp +C) +o,

is a sufficiently accurate approximation for f, where

i ot

-—

vy
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IR P P IR I R . - a4 .a

o o o 206? - 4c? - (1-3/3)c +V3}

k2 - 5¢ + 4V3

3kt - 7 + 6V3c - 2V3
k% - 5¢ + 43

3

2 (1+C1+C2)

L =
It is noted that this approximation will predict the correct singularity

for deformation gradients at the crack tip because of the use of Hermitian
interpolation. Indeed, as was seen earlier, the singularity of 3x/93X is
determined by the derivative of f at p = 1. Also, it is evident, from (3.8)
that the singularity of 3x/3X does not depend on &. This observation serves

*
as another justification for the use of (3.15). With £ replacing f in

(3.2+), we obtain

}xl FlL 1/3 K—mo Bo 2
_— = - 2 - 2 3
==L en2e-01 et v o (552) |
1 o
B 3 2
X, ) F . -1 2/3 (K—wo)o
s T ~_1 >
axz n o-1 D—wo
where
— i 2y
) c (4(:2 cl) . - 1, Ccq¥2
“o 2 ’ o 3

We also have

N
x =-afe-dl 2/3 ! (p »0) °
1 F (K—l) ’ K=

1
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(6.9a)

(6.9b)

(6.9¢)

’

(6.10)

(6.11)

(6.12a,b)

(6.13)
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Hence we have
ax2 pa
= — . (6.14)
BXZ X1
Further simplifications may be introduced when § = k/2u << 1. Then
Fl ,21+00) =1, p= 3/x* = 0.16, q = ¥3/x?® = 0.19. (6.15a,b,c)
With these constants, (5.22) gives
Yy = 0.321. (6.16)
This result, (5.4), (5.23) and (5.18) yield Xp = 3.95a and
from (5.12), we see that the material in the range 0 < X1 < 3,12a will be
in plastic zone. Plots of the deformation gradients on the crack line
for § = 0 are given in Fig. 7.
Finally, we can make an estimate of a in terms of the stress intensity
factor KI of linear elastic fracture mechanics by equating the plastic zone
sizes predicted by the present theory and existing small strain theories.
Small strair theories predict that the length of the plastic zone xp is
given by
x, = ¢ Ki/kz , (6.17)

where ¢ = 7/24 * 0.13 according to the Dugdale model, and ¢ = 2v2/97 = 0.10,

according to the analysis Achenbach and Dunayevsky (1984). By equating (6.17)

to xp—a = 2.%5a and X 3.12a respectively, w2 obtain

k2 K2
- § ._c 1
277095 2 and a = 35 - : (6.18a,b)
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o

Fig. 2 Characteristic curves for Hutchinson's field. Point
0 corresponds to the crack tip.

Fig. 3  Characteristic curves for Thomason's field. Point 0

corresponds to the crack tip.

..................
............................................
P = SR SR R VT NP VY W S W iy S SR e i e Ry R R P S

.................................

Toe W e T




33

Fig. 4 Characteristic curves for crack-tip zone and intermediate
region, with Hutchinson's field in intermediate region.

IR ek o S B a3

Fig. 5 Characteristic curves for crack-tip zone and intermediate
region, with Thomason's field in intermediate region
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Elastic-plastic boundary in x.,-a plane.
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